Ideal Vial Size for Bortezomib: Real-World Data on Waste and Cost Reduction in Treatment of Multiple Myeloma in Brazil

Luciana Clark, MD*⁺, Ana Paula Castro, RN, Anna Flávia Fortes, RN, Fábio Santos, Odviole Clark, MD, PhD, Tobias Engel, MD, Bruna Pegoratti, MD, Vanessa Teich, BSIE, Denizar Vianna, MD, Fabiola Pury, MD⁺

*Évangelico, Campinas, Brazil; †Medisight, São Paulo, Brazil

A B S T R A C T

Objective: Single-size vials of drugs may be a source of waste and increase in treatment costs. Bortezomib, indicated for multiple myeloma (MM) treatment, is available in 3.5-mg vials, a quantity higher than the average dose commonly prescribed. This analysis aimed to demonstrate, through real-world data, which would be the optimal vial presentation for bortezomib in Brazil and quantify the reduction in medication waste related to this option. Methods: From November 2007 to October 2009 all patients with MM treated with bortezomib were identified via the Évidências database. Analysis of prescribed, dispensed, and wasted doses, their costs and projections of the ideal vial size were performed. Results: Thirty-five patients (mean body surface area of 1.73 m²) received 509 infusions in 121 cycles of treatment (average of 3.77 cycles per patient). The average dose prescribed was 2.1 mg per infusion (95% confidence interval [CI] 1.97–2.25) with average waste of 79.5% of the vial content (95% CI 75–83.7%). The mean waste per patient per day was 1.38 mg (95% CI 1.34–1.42). If a 3-mg vial were available, the average drug waste per patient per day would be 0.88 mg (95% CI 0.74–1.03) or 36.2% less. With a 2.5-mg vial the waste would be 1.05 mg (95% CI 0.81–1.29) or 28.9% less. If two presentations were available (2.5 mg and 0.5 mg), the waste would be 0.62 mg (95% CI 0.60–0.64) or 62.3% less. Considering the price of the different vials to be proportional to the original 3.5-mg vial, the cost would also be reduced by the same rates described above. Conclusions: A simple adjustment in vial size may reduce the waste of bortezomib by 36% to 62% and can also reduce the cost of treatment.

Keywords: bortezomib, cost-reduction, drug waste, myeloma

Copyright © 2011, International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc.

Introduction

Multiple myeloma (MM) is considered a chronic disease for which—despite many advances in therapy—there is currently no curative treatment available. The development of novel agents that target the tumor cell and the microenvironment, immunomodulators, proteasome inhibitors, and biopharmaceuticals has changed the standards of care for affected patients. Even with the achievement of complete responses in few cases, the ultimate goals for patients with MM are extended survival and quality of life [1–4].

The costs associated with current and emerging therapies, as well as supportive care, are significant and pose a tremendous financial burden to both patients and health care systems [5]. This is an important aspect to be considered, especially in underdeveloped countries and emerging economies in which the bulk of resources destined to health care is often reduced and unevenly distributed. Newer classes of cytotoxic agents are, for the most part, very expensive and there may be considerable resource savings in the judicious application of dose rounding without any negative clinical effect, given the significant interpatient pharmacokinetics and pharmacodynamics variability for most cytotoxic drugs [6].

Single-size vials of chemotherapy drugs may be an uncontrolled source of waste and increase in treatment costs. There is, however, the possibility of customizing the dose of chemotherapy for each patient not only by the body surface area (BSA) measurement, but also by adjusting the final dose to the nearest vial size. Previous published studies described this kind of adjustment as cost-saving in several types of chemotherapy treatments [6,7].

Bortezomib (Velcade, Janssen-Cilag, Beerse, Antwerp, Belgium) is a drug frequently used in MM treatment that is available in Brazil and in many other countries only as a 3.5-mg vial. This presentation dose is higher than the average dose commonly prescribed and due to the lack of preparations in the vial, it is mandatory that the drug be administered within 8 hours of preparation. This analysis aimed to demonstrate, through real-world data, which would be the optimal vial presentation for bortezomib in Brazil and to quantify the reduction in medication waste and costs related to it.

Study design

This study is a retrospective analysis of data extracted from the Évidências Database [2], an electronic system design to evaluate chemotherapy requests from health care providers and permit the approval or denial of coverage by auditors. The database is available as a secure website where patient data such as age, disease stage, BSA, and drugs requested among other information are prospectively stored. E0 covers approximately 5% of the Brazilian pri-
vate health care market. For this analysis we used the payer’s perspective on the private health care system.

During the period of November 2007 to October 2009, all pa-
tients diagnosed with MM (cases entered into ED with the Interna-
tional Statistical Classification of Diseases and Related Health Problems code C90.0), submitted to treatment containing bort-
emomab for at least one infusion were identified. All patients were treated in private care referral cancer centers, according to usual chemotherapy protocols and identified on the auditing medical system.

Details regarding the prescribed dose of bortezomib, individu-
ally and collectively wasted doses, and the respective average doses per patient and per cycle were retrieved. The actual dose dispensed to perform the infusion was also calculated. That is important because it is often necessary to open multiple vials to fulfill the prescribed dose, thus accounting for increased waste.

The costs of the wasted drug and the projection of costs saved with different vial sizes were calculated.

The mean and average calculations were performed based on usual mathematical formulas and were represented as milli-
grams, US dollars, the Brazilian currency reais (R$), or square me-
ters, according to the variable studied. The results are reported with the corresponding 95% confidence interval (CI). The amount of drug wasted was also expressed in percentage related to the total content of the 3.5-mg vial. The results of costs were ex-
presse in US dollars with the cost of the 3.5-mg bortezomib vial being R$48.83, which was indexed by the consumer price index (CPI) for the period of June 2008 to May 2009. The price list used was the Brazilian Official Price List [8], determined by the federal government, by the wholesale price plus taxes. Differently sized vials were priced proportionally to the existing vial for economic projections.

A patient was identified by name or any particular character-
istic during this study. All health care providers previously au-
thorized the data extraction in signed contracts. Because the purpose of this study was to spectacular representation for bort-
emomab, the clinical aspects and the outcomes regarding effectiv-
ness and security of this drug were not taken into consideration.

Results

Thirty-five patients with MM treated with bortezomib (alone or in
association with other cytotoxic drugs) were identified on ED.

The mean body surface area was 1.73 m². The average prescribed dose per infusion was 2.1 mg (95% CI 1.97–2.26) with average waste of 39.5% of the vial content (95% CI 35.35–43.76) of the contents of a standard 3.5-mg vial per day of 0.99 mg per cycle. The patients received a total of 509 days of infusion distributed in 131 cycles (average of 3.77 cycles per patient).

During the period of time analyzed, a total of 178.5 mg were
dispensed to cover 105.5 mg prescribed, resulting in a gross loss of 705.7 mg (39.6%) of bortezomib. That means that of the US$1,192,841.00 spent on the drug, US$1,192,841.00 was wasted. The total amount of resource wasted per day, with all 35 patients, was US$81,412,095. Those data are described in Table 1 and 2 in the Supplemental Materials found at: doi:10.1016/j.jval.2011.05.013.

The average waste projections for every patient per day and per
cycle of treatment, respectively, according with the different vial
sizes proposed is described in Table 2 (in Supplemental Materials
found at: doi:10.1016/j.jval.2011.05.013). The percentage is defined in regard to the standard 3.5-mg vial. For a 3-mg vial, 0.88 mg/day (95% CI 0.74–1.03) or 36.7% less and 3.44 per cycle (95% CI 2.85–
4.04). For a 2.5-mg vial, 1.90 mg/day (95% CI 1.61–2.28) or 23.3% less and 3.96 per cycle (28.4% more than with the 3.5-mg vial).

If two different presentations were available, 2.5 mg and 0.5
mg, the waste per patient per day would be 0.52 mg (95% CI 0.4–
0.63 or 20.5% less and 2.01 mg per cycle (82.7% less than with
3.5-mg vial).

The cost reduction projections per day and per cycle, respec-
tively, assuming a proportional price of the proposed vials to the
3.5-mg vial, are described in Table 3 in the Supplemental Materials

Using the currently available 3.5-mg vial, an average of US$925.88/day and US$8,871.35/cycle are lost. If a 3-mg vial were available, the average loss would be US$405.92/day (36.1% less than with the 3.5-mg vial size) and US$3,990.61/cycle.

With the 2.5-mg vial, the average waste per patient per day was
US$795.56 (23.9% less than with the 3.5 mg vial size but 15.9% higher than with the 3-mg vial size) and US$743.97 per cycle.

If considering the combination of 2.5 mg plus 0.5-mg vials
sized, the loss would be US$349.75/day (62.5% less than with the
3.5-mg vial size) and US$148.15 per cycle (62.6% less). The total
cost wasted per day for all 35 patients was US$409,474.01 (62.5% less than with the 3.5-mg vial size) or US$776,607.25 per cycle.

Discussion

Although MM accounts for only a small percentage of all can-
cers, the costs associated with treating and managing it are
among the highest [9]. Recent developments in diagnosing,
treating, and managing MM have led to novel treatment strate-
gies. Immunoanalagons, proteasome inhibitors, and biphospho-
ates are improving response rates and preserving patients’
quality of life [10]; however, these agents are not replacing the
older treatment modalities, but rather being used in addition to
them [11].

The landscape of myeloma therapy has changed radically
since 1990 with the introduction of new (eritopenic and better pro-
nostic indicators ushering in a new era of MM management [10].
Novel agents resulting in extended survival and better under-
standing of the biology of the disease have helped select patients
most likely to benefit from stem cell transplantation. The costs
associated with current and emerging therapies, as well as sup-
portive care are significant and likely to increase further on, as
patients begin to live longer

Furthermore, the majority of existing cytotoxic chemotherapy
protocols are based on dosage calculation from BSA. There is a growing body of evidence that demonstrates the large interpatient variabil-
ity associated with dosing by BSA [12–16]. Despite this known vari-
bility, it is common practice for clinicians to calculate doses of
chemotherapy to the exact milligram based on BSA estimated to
the decennial points [15]. In some instances dose rounding is em-
ployed by the clinician (e.g., capping) and in others by pharmacists
preparing the drug, but this is still more the exception than the rule [12]. There are practical implications related with costs and
unnecessary losses in preparing cytotoxic doses calculated to the
exact milligram.

Mertens et al. [11] conducted a study aimed to evaluate the
effects of dose rounding on treatment cost. During the study pe-
riod, 18 different anticancer drugs were administered 993 times.
If dosage had been based strictly on BSA, drug costs would have been US$59,644. Rounding off to whole numbers led to a dose margin of a maximum of 10% would have cost US$464,615 a reduction of 8.6%.

The rational application of the dose individualization principle
based on body surface area may result in a substantial reduction in
expenditure on anticancer drugs [14].

Dose rounding has been considered acceptable to within 5% of
calculated dose because of the basis of pharmacokinetic and clin-
ical issues this dose adjustment is not expected to have any sig-
cificant effect on either response or toxicity [8,17–19].

Another possibility to help solve the waste problem would be to
combine multiple infusions on the same day. In terms of our
study, however, it would be highly unlikely, not only because of
the rarity of the disease but also due to the fact that the 35 patients
were located in 18 different states in Brazil.
The reason we assigned a proportional cost to the different boronophenyl vials was because usually drug prices in Brazil are calculated to be proportional to their dosage; that is, if a medication is available in 50- and 100-mg vials, the latter will be twice as expensive as the former [8].

Drug waste may be defined as the consequence of an inappropriate disposal of unused or partially used ampoules, vials, or syringes of drugs [20]. It has been previously demonstrated that inefficiency of drug use and waste production may lead to a distinct economic loss, though experiences are limited and most studies are dated or focus on other therapeutic areas [9,20–22]. Decreasing waste is an attractive cost-cutting strategy because it neither limits specific drug use nor affects quality of care [7].

One of the main reasons for drug waste was especially the limited extent of chemotherapy medication shelf-life and the narrow availability of a range of vial sizes flexibly matching with possible drug dosages [7]. Adopted corrective measures were the logical consequence of these findings: if drug instability is a basis for drug waste, it is reasonable to use, whenever possible, multidose vials that retain a much longer microbial and chemical stability and to operate a per pathology/per drug distribution system of chemotherapy sessions over the week to allow the reuse of leftovers in other patients while respecting drug stability [2].

One of the limitations of this study was its small sample size. Although we used a database that covers 5% of the Brazilian private health care market, MM is much less frequent than other neoplasms such as breast or colon cancer and therefore it is important that these findings are confirmed in larger cohorts of patients.

Finally, there has been much discussion on the rising prices of oncologic treatments and how much is too much [22]. We believe that this discussion is even more important in developing countries, which are plagued by a perennially insufficient health care budget. To keep the discussion active we made this analysis and intended to show how the simple adjustment of vial size in boronophenyl could affect costs and minimize drug waste.

Conclusions
A simple adjustment in vial size from 3.5 to 3.0 mg reduces boronophenyl waste by 95%. If presentations of 2.5 mg and 0.5 mg were available, the waste reduction could be as high as 62%.

Supplemental Materials
Supplemental material accompanying this article can be found in the online version as a hyperlink at doi:10.1016/j.jval.2011.05.013, or if hard copy of article, at www.valueinhealthjournal.com/issues (select volume, issue, and article).

References

