Considerations of building patient flow and patient forecast models in Brazil

Catalysts driving successful decisions in life sciences
Market Reactions Roundtable

Authors

In what areas can patient flow and patient forecast models benefit the pharma business?

Patient flow and patient-based forecast models are key tools in understanding how patients move through each stage of the treatment cycle — with both elements influencing the success of critical business areas. Patient forecasts enable understanding of future events with a drug or treatment, providing insight needed to build more informed access strategies, while understanding how the flow of patients can also inform pharma’s marketing, administration, access and competitive intelligence teams. Within these departments, senior leaders, such as public agency managers, are seeking to understand the concepts so that they can be more fluent in their discussions with healthcare managers in other departments, regarding product dynamics. In Brazil, these elements are especially helpful in marketing and market research areas. There is an intrinsic need to build knowledge of forecasting and increase the use of scientific methods to predict the product’s evolution on the market.

What are the keys to building a quality patient forecast or a patient flow model?

It all depends on the quality of data available. We usually think in terms of a product launch, where we can be more realistic in the initial adoption phase, resulting in a more accurate cumulative sales valuation. These models can add more precision to this planning to set more efficient strategies. That goes not only for the industry but also for health plans and the government as they could benefit from more precise planning when allocating resources.

Another important consideration in building these models is maintaining a balance between complexity and simplicity. The precision and accuracy required depend on the reliability of information included in the model. Often, users will attempt to make models more complex than necessary. These models may need to be simpler, while assumptions will need to be more precise. Because forecasts are created to assist in the decision-making process, models must be aligned to the planning and goals of the business need at hand.

How does the process for building patient flow and patient forecast models differ for Brazil versus other geographies?

While the basic principles of forecasting remain consistent regardless of geography, adjustments to address the unique characteristics of local markets need to be addressed.

The greatest challenge to creating and adapting these models in Brazil is data availability. To work with patient forecast and patient flow models, we need reasonably accurate data. In Brazil, this data is not as readily available as it is in the U.S. or Europe. In cases where no data is available, it is necessary to make assumptions based on the best available evidence. Alternatively, Kantar Health and Evidências employ proprietary databases that provide valuable information.
Why Kantar Health

Kantar Health is a leading global healthcare consulting firm and trusted advisor to many of the world’s leading pharmaceutical, biotech, and medical device and diagnostic companies. It combines evidence-based research capabilities with deep scientific, therapeutic and clinical knowledge, commercial development know-how, and brand and marketing expertise to help clients evaluate opportunities, launch products and maintain brand and market leadership. Our advisory services span three areas critical to bringing new medicines and pharmaceutical products to market – commercial development, clinical strategies and marketing effectiveness.

For more information, please visit www.kantarhealth.com.

on a wide range of disease areas to fill gaps in data. Assumptions could be derived from analogous product analyses, literature reviews, data extrapolated from other countries or even from internal sources and knowledge. These data are not always widely available through any other source, and enable more accurate forecasting models to be created.

What benefits do patient forecast and patient flow models provide to the healthcare system and to Brazil?

Brazil, like most developing countries, has a shortage of resources, and it’s important they are used as effectively as possible. In the healthcare system, this requires investing in more effective therapies and technologies that provide the best cost-benefit ratio instead of spending on inefficacious treatments. The concepts of patient flow and patient forecasts can be applied to this situation by determining the impact of the approval of innovative therapies on healthcare budgets. Understanding how a patient moves through the system, in turn, increases understanding of what happens in the real world, since data derived from clinical trials do not always reflect real-world results. Therefore, developing forecasts to define real results and gaps in the healthcare system is not only critical for pharma companies but also enables more accurate and effective decisions regarding healthcare utilization for private and public payers.

About the experts

Todd Johnson
Vice President, Kantar Health

Mr. Johnson has more than 25 years of commercial experience in the pharmaceutical industry. Mr. Johnson is a recognized subject matter expert across a variety of forecasting and marketing research methodologies and is a frequent speaker at industry conferences. He has held leadership positions at Kantar Health and its legacy companies for over nine years.

Luciano Paladini
Medical Analyst, Evidências

Dr. Paladini is a medical oncologist who develops Health Technology Assessments, also providing epidemiological data for feeding patient forecasting models. He also works part time in a university hospital as part of the medical oncology staff.

Alvaro Nishikawa
Pharmacoeconomics Coordinator, Evidências

Mr. Nishikawa works in the Projects Department focused in the development of clinical-economic value dossiers, market access and pricing strategy, pharmacoeconomics modeling and database analysis.